U N I T III

KINETIC MOLECULAR DESCRIPTION OF THE STATES OF MATTER

 \rightarrow the behavior of matter as perceived and measured on the scale of human experience to the structures and interactions of the molecules in the matter.

 \rightarrow We see that macroscopic properties are determined by nanoscopic structures and the forces between them.

CHAPTER 9 The Gaseous State

CHAPTER 10

Solids, Liquids, and Phase Transitions

CHAPTER 11 Solutions

General Chemistry I

1

9 **CHAPTER**

THE GASEOUS STATE

- \rightarrow Statistical mechanics to explain the connection between microscopic structure and macroscopic properties.
- \rightarrow In the study of gases it is a legitimate simplification to ignore interactions between molecules until they collide and then to consider collisions between only two molecules at a time
- **9.2** Pressure and Temperature of Gases
- **9.3** The Ideal Gas Law
- **9.4** Mixtures of Gases
- **9.5** The Kinetic Theory of Gases
- **9.6** Real Gases: Intermolecular Forces
- \rightarrow Whereas the chemical properties of gases vary significantly, their physical properties are quite similar and much simpler to understand

3

Key question: how can we describe molecular behaviors in the gaseous state?

9.2 PRESSURE AND TEMPERATURE OF **GASES**

Macroscopic behavior of a gas can be characterized by the three properties

Volume (V): Avogadro's hypothesis: *V* ∝ *n*

Pressure (P): $P = F/A$, how can we measure this?

Temperature (T): ??

What is the relation between V, P, and T?

9.2 PRESSURE AND TEMPERATURE OF GASES

Evangelista Torricelli (ITA, 1608-1647)**KAIST CHEMISTRY**

Force exerted by the mercury column at its base *F* = *mg*

$$
\text{Pressure:} \quad P = \frac{F}{A} = \frac{mg}{A} = \frac{mg}{V/h} = \frac{m}{V}gh = \rho gh
$$

 ρ = 13.5951 g cm⁻³ \rightarrow density of Hg(*l*) at 0 °C $g = 9.80665$ m s⁻² \rightarrow gravitational acceleration $h = 76$ cm \rightarrow height of mercury column

$$
P = 1.01325 \times 10^{5} \text{ kg m}^{-1} \text{s}^{-2}
$$

\n= 1.01325 × 10⁵ Pa
\n= 1 atm
\n= 760 torr (at any temperature) tor
\n= 760 mmHg (at 0°C)
\nGeneral Chemistry I
\n**General Chemistry I**
\n**Example 9.2 Unit
\nUnit
\nUnit
\nUnit
\n
$$
P = 9.2
$$
 Unit
\nUnit
\nUnit
\n
$$
P = 9.2
$$
Unit
\nUnit
\n
$$
P = 9.2
$$
Unit
\n
$$
P = 1.01325 × 105 Pa
$$**

Units of Pressure

Definition

1 kg m^{-1} s⁻²

 1×10^5 Pa

101,325 Pa

1/760 atm

1 atm

1 atm

⁸ **Pressure and Boyle's Law**

 \sim Experiments on the compression and expansion of air.

"*The spring of the Air and Its Effects*" (1661).

- (a) P vs. $V \rightarrow$ hyperbola
- (b) *P* vs. $1/V \rightarrow$ straight line passing through the origin (slope: *C*)
- (c) PV vs. $P \rightarrow$ straight line independent of P

(parallel to *P*-axis, intercept *C* on *PV*-axis)

The value of *C* at 0°C and for 1 mol of gas,

~ good for all gases at very low pressure

C = PV **= 22.414 L atm**

◆ Pressure and Boyle's Law

Boyle's *J*-tube experiment

Trapped air at the closed end of the *J*-tube: 1 atm $+\frac{h (\text{in mm})}{760 \text{ mm atm}^{-1}}$ 760 mm atm $P = 1$ atm $+\frac{h (\text{in mm})}{760 \text{ mm atm}^{-1}}$

Add Hg and measure the volume of air (*V*):

 $P = \frac{C}{U} = C\left(\frac{1}{V}\right)$

or $PV = C$

 V V

 $=\frac{C}{V}=C\left(\frac{1}{V}\right)$

C: a constant at constant *T* and fixed amount of gas

 (1)

Robert Boyle (UK, 1627-1691)

Temperature and Charles's law

Fig. 9.5 Volume of a gas confined at constant *P* increases as *T* increases.

Fig. 9.6 The volume of a sample of a gas is a function of temperature at constant pressure.

KAIST **CHEMISTR**

Temperature and Charles's law

 $V = constant \times T$ (at constant *n* and *P*)

$$
t = 273.15 \, \text{°C} \left(\frac{V}{V_0} - 1 \right)
$$

$$
V = V_0 \left(1 + \frac{t}{273.15 \, \text{°C}} \right) = V_0 \cdot \frac{T}{273.15}
$$

 $T(Kelvin) = 273.15 + t(Celsius)$

General Chemistry I Jacques Charles (France,1746-1823)

◈ Absolute Temperature Scale, K

Kelvin, Lord William Thomson (UK, 1824-1907)

0 K : 'absolute zero'temperature 273.16 K : triple point of water

 $0 K = -273.15 \degree C \rightarrow 0 \degree C = 273.15 K$

Kelvin scale: absolute, thermodynamic temperature scale 'absolute zero' temperature at which all thermal motion ceases in the classical description of thermodynamics.

14

 \rightarrow a direct connection between the experimentally observed macroscopic behavior of matter and the structure and interactions of its constituent molecules.

9.3 THE IDEAL GAS LAW

Boyle's law: *V* ∝ 1/*P* (at constant *T* and *n*) Charles' law: *V* ∝ *T* (at constant *P* and *n*) Avogadro's hypothesis: *V* ∝ *n* (at constant *T* and *P*)

PV **=** *nRT*

√ Equation of state

- $\sqrt{ }$ Limiting law for real gases as $P \rightarrow 0$
- √ *Universal* gas constant, *R R* = 8.314 J·K**–**1·mol**–**¹
	- = 8.206 x 10**–**² L·atm·K**–**¹

The Gas Constant, R

8.205 74 \times 10⁻² L·atm·K⁻¹·mol⁻¹ 8.314 47 \times 10⁻² L·bar·K⁻¹·mol⁻¹ 8.314 47 L·kPa·K⁻¹·mol⁻¹ 8.314 47 J·K⁻¹·mol⁻¹ 62.364 L.Torr. K^{-1} .mol⁻¹

EXAMPLE 9.5 Concentrated nitric acid acts on copper

to give nitrogen dioxide and dissolved copper ions according to the balanced chemical equation

 $Cu(s) + 4H^{+}(aq) + 2NO_{3}^{-}(aq) \rightarrow 2NO_{2}(g) + Cu^{2+}(aq) + 2H_{2}O(l)$

 $Cu(s) + 4H^{+}(aq) + 4NO_{3}(aq) \rightarrow 2NO_{2}(g) + Cu(NO_{3})_{2}(aq) + 2H_{2}O(l)$

Suppose that 6.80 g copper is consumed in this reaction, and that the $NO₂$ is collected at a pressure of 0.970 atm and a temperature of 45 \degree C. Calculate the volume of NO₂ produced.

6.80 g Cu 63.55 g mol $^{-1}$ $= 0.107$ mol Cu $= 0.107$ mol Cu \times $2 \text{ mol } NO_2$ 1 mol Cu $= 0.214$ mol NO₂

$$
V = \frac{nRT}{P} = \frac{(0.214 \text{ mol})(0.08206 \text{ L atm mol}^{-1} \text{K}^{-1})(273.15 + 45) \text{K}}{0.970 \text{ atm}} = 5.76 \text{ L}
$$

9.4 MIXTURE OF GASES

▶ **Partial pressure** (P_i) of the ith gas in a mixture of gases \rightarrow pressure that the ith gas would exert if it occupied the container alone

◆ **Dalton's Law of Partial Pressures**

The total pressure of a mixture of gases is the sum of the partial pressures of its component.

$$
P = P_{\rm A} + P_{\rm B} + \dots = \sum_{\rm i} P_{\rm i}
$$

 \triangleright **Mole fraction** of the component A, X_A

$$
x_{A} = \frac{n_{A}}{n_{A} + n_{B} + \cdots}, \qquad x_{A} + x_{B} + \cdots = 1
$$

$$
P_{A} = \frac{n_{A}RT}{V}, \quad P = \frac{nRT}{V} = (n_{A} + n_{B} + \cdots) \frac{RT}{V} \longrightarrow P_{A} = \frac{n_{A}P}{n_{A} + n_{B} + \cdots} = x_{A}P
$$

$$
\therefore P_{\rm A} = x_{\rm A} P
$$

EXAMPLE 9.6 When $NO₂$ is cooled to room temperature, some of it reacts to form a dimer, N_2O_4 , through the reaction

$$
2NO_2(g) \rightarrow N_2O_4(g)
$$

Suppose 15.2 g of $NO₂$ is placed in a 10.0 L flask at high temperature and the Flask is cooled to 25° C. The total pressure is measured to be 0.500 atm. What partial pressures and mole fractions of $NO₂$ and $N₂O₄$ are present?

$$
\frac{15.2 \ g \ N O_2}{46.01 \ g \ mol^{-1}} = 0.330 \ mol \ NO_2 \qquad n_{N O_2} + 2n_{N_2 O_4} = 0.330 \ mol
$$

$$
P_{NO_2} + P_{N_2O_4} = \frac{RT}{V} n_{NO_2} + \frac{RT}{V} n_{N_2O_4} = 0.500 \text{ atm}
$$

 $n_{NO_2} + n_{N_2O_4} = 0.500$ at V = $(0.500~atm)(10.0~L)$ $(0.08206 L atm mol⁻¹ K⁻¹)(298 K)$ $= 0.204$ mol

 \therefore $n_{N_2O_4}=$ 0.126 mol, $n_{NO_2}=$ 0.078 mol

- \rightarrow Microscopic explanation of empirical ideal gas law
- \rightarrow Begin with a model and use the basic laws of physics with mathematical reasoning to show how this model helps explain the measured properties of gases.

20

9.5 THE KINETIC THEORY OF GASES

- 1. A gas consists of a collection of molecules in continuous random motion.
- 2. Gas molecules are infinitesimally small (mass) points.
- 3. The molecules move in straight lines until they collide.
- 4. The molecules do not influence one another except during collisions.
- \rightarrow provides a microscopic understanding of Boyle's law and also a microscopic mechanical definition of temperature as a measure of the average kinetic energy of the molecules in a gas

- **Collision with walls**: consider molecules traveling only in one dimensional x with a velocity of v_x .

The change in momentum of one molecule: $2mv_x$

All the molecules within a distance $v_x\Delta t$ of the wall and traveling toward it will strike the wall during the interval ∆t.

If the wall has area A, all the particles in a volume Av_x∆t will reach the wall if they are traveling toward it.

The number of molecules in the volume $Av_x\Delta t$ is that fraction of the total volume V, multiplied by the total number of molecules:

Number of molecules =
$$
\frac{Av_x \Delta t}{V} \times N = \frac{NAv_x \Delta t}{V}
$$

The average number of collisions with the wall during the interval Δt is half the number in the volume Av_x Δt :

Number of collisions =
$$
\frac{NAv_x\Delta t}{2V}
$$

The total momentum change $=$ number of collisions \times individual molecule change

$$
Total momentum change = \frac{NAv_x\Delta t}{2V} \times 2mv_x = \frac{NmAv_x^2\Delta t}{V}
$$

Force = rate of change of momentum = $\frac{1}{2}$ $NmAv_x^2$ \overline{V}

$$
Pressure = \frac{NmAv_x^2}{VA} = \frac{Nmv_x^2}{V}
$$

$$
P = \frac{Nmv_x^2}{V}
$$
 for the average value of $\overline{v_x^2}$

$$
\triangleright \text{ mean-square speed} \qquad \overline{u^2} = \overline{v_x^2} + \overline{v_y^2} + \overline{v_z^2} = 3\overline{v_x^2}
$$

$$
PV = \frac{1}{3} N m \overline{u^2} \qquad P = \frac{N m \overline{u^2}}{3V}
$$

$$
PV = \frac{1}{3} N m \overline{u^2} = nRT \qquad \qquad \frac{1}{3} N_A m \overline{u^2} = RT
$$

- Kinetic energy of N_A molecules, $ \bar{E} =$ 1 $\frac{1}{2} N_A m u^2 =$ 3 2 × 1 $\left(\frac{1}{3}N_A m u^2\right)$ = 3 2

- average kinetic energy per molecule, $\|\bar{\pmb{\varepsilon}}\|=$ $\mathbf{3}$ $k_B = R/N_A$

 \rightarrow Depends only on the temperature

- root-mean-square speed
$$
\overline{u^2} = \frac{3RT}{M}
$$

$$
u_{rms} = \sqrt{\overline{u^2}} = \sqrt{\frac{3RT}{M}}
$$

 $M =$ molar mass = N_A m

Maxwell-Boltzmann distribution of speed

$$
\frac{\Delta N}{N} = f(v)\Delta v \quad \text{with} \quad f(v) = 4\pi \left(\frac{M}{2\pi RT}\right)^{3/2} v^2 e^{-Mv^2/2RT}
$$
\n
$$
\Rightarrow \text{the speed distribution function} \quad \text{or} \quad f(v) = 4\pi \left(\frac{m}{2\pi k_B T}\right)^{3/2} v^2 e^{-mv^2/2k_B T}
$$

Boltzmann constant: $k_{_B}=R$ / $N_{_\mathrm{A}}=1.38066\!\times\!10^{-23}\,$ J \cdot K $^{-1}$

General Chemistry I (Scotland, 1831-1879) (Austria, 1844-1906)

James Clerk Maxwell Ludwig Eduard Boltzmann

Fig. 9.13 A device for measuring the distribution of molecular speeds.

27

(1) Most probable speed:

$$
v_{mp} = \sqrt{\frac{2k_B T}{m}} = \sqrt{\frac{2RT}{M}} \qquad \left[\frac{df(v)}{dv} = 0\right]_{v=v_{mp}}
$$

(2) Average speed:

$$
\bar{v} = \int_{0}^{\infty} vf(v) dv = \sqrt{\frac{8k_B T}{\pi m}} = \sqrt{\frac{8RT}{\pi M}}
$$
\n(3) Mean square speed:
\n
$$
\overline{v^2} = \int_{0}^{\infty} v^2 f(v) dv = \frac{3k_B T}{m} = \frac{3RT}{M}
$$

 $0.2₁$

(4) Root-mean-square speed:

$$
v_{rms} = \sqrt{\overline{v^2}} = \sqrt{\frac{3k_B T}{m}} = \sqrt{\frac{3RT}{M}}
$$

 $v_{mp} < \bar{v} < v_{rms} = 1.000 : 1.128 : 1.225$

9.6 REAL GASES: INTERMOLECULAR FORCES

▶ **Compression (or Compressibility) factor,** *Z*

$$
Z = \frac{V_{\text{m}}}{V_{\text{m}}^{\text{ideal}}} = \frac{V_{\text{m}}}{RT/P} = \frac{PV_{\text{m}}}{RT}
$$

- For an ideal gas, $Z = 1$.
- Real gases,

deviation from $Z = 1$ as P \uparrow .

- *Z* < 1 for attractive force
- *Z* > 1 for repulsion

z = PV/nRT

◆ The Van der Waals Equation of State

- ▶ Corrections to the ideal equation of state
	- Attraction at long distance:

Reduction in collision frequency $\alpha \propto n/V$

Reduction in intensity of collision $\alpha \propto n/V$

$$
P_{\text{ideal}} = P + a \frac{n^2}{V^2}
$$

- Repulsion at short distance :

No overlap of molecules \rightarrow excluded volume effect Reduction in free volume ∝ *n*

$$
V_{\rm ideal}=V-bn
$$

▶ Van der Waals equation:

$$
\left(P + a\frac{n^2}{V^2}\right)(V - nb) = nRT
$$
 a: atm L² mol⁻²
b: L mol⁻¹
R: L atm mol⁻¹ K⁻¹

$$
z = \frac{PV}{nRT} = \frac{V}{V - nb} - \frac{a}{RT}\frac{n}{V} = \frac{1}{1 - \frac{bn}{V}} - \frac{a}{RT}\frac{n}{V}
$$

Repulsive forces (through b) increase z above 1. Attractive forces (through a) reduce z.

- Constant b is the volume excluded by 1 mol of molecules and should be close to V_m , the volume per mole in the liquid state.

TABLE 9.3

van der Waals Constants of Several Gases

Lennard-Jones Potential:

$$
V_{\text{LJ}}(R) = 4\varepsilon \left[\left(\frac{\sigma}{R} \right)^{12} - \left(\frac{\sigma}{R} \right)^{6} \right]
$$

where ε is the depth and σ is the distance at which *V*(*R*) passes through zero.

35 \rightarrow The two parameters ε and σ in the Lennard–Jones potential, like the van der Waals parameters a and b, are simple ways of characterizing the interactions between molecules in real gases.

TABLE 9.4

Lennard-Jones Parameters for Atoms and Molecules

Key question: how can we describe molecular behaviors in the gaseous state?

