UNIT III

KINETIC MOLECULAR DESCRIPTION OF THE STATES OF MATTER

→ the behavior of matter as perceived and measured on the scale of human experience to the structures and interactions of the molecules in the matter.

→ We see that macroscopic properties are determined by nanoscopic structures and the forces between them.

CHAPTER 9 The Gaseous State

CHAPTER 10

Solids, Liquids, and Phase Transitions

CHAPTER 11 Solutions

9 Chapter

THE GASEOUS STATE

- → Statistical mechanics to explain the connection between microscopic structure and macroscopic properties.
- → In the study of gases it is a legitimate simplification to ignore interactions between molecules until they collide and then to consider collisions between only two molecules at a time
- **9.2** Pressure and Temperature of Gases
- 9.3 The Ideal Gas Law
- 9.4 Mixtures of Gases
- 9.5 The Kinetic Theory of Gases
- 9.6 Real Gases: Intermolecular Forces
- → Whereas the chemical properties of gases vary significantly, their physical properties are quite similar and much simpler to understand

3

Key question: how can we describe molecular behaviors in the gaseous state?

9.2 PRESSURE AND TEMPERATURE OF GASES

Macroscopic behavior of a gas can be characterized by the three properties

Volume (V): Avogadro's hypothesis: $V \propto n$

Pressure (P): P = F/A, how can we measure this?

Temperature (T): ??

What is the relation between V, P, and T?

9.2 PRESSURE AND TEMPERATURE OF GASES

Evangelista Torricelli (ITA, 1608-1647) KAIST CHEMISTRY

Force exerted by the mercury column at its base F = mg

Pressure:
$$P = \frac{F}{A} = \frac{mg}{A} = \frac{mg}{V/h} = \frac{mg}{V}gh = \rho gh$$

 ρ = 13.5951 g cm⁻³ \rightarrow density of Hg(*I*) at 0 °C g = 9.80665 m s⁻² \rightarrow gravitational acceleration h = 76 cm \rightarrow height of mercury column

$$\therefore P = 1.01325 \times 10^5 \text{ kg m}^{-1}\text{s}^{-2}$$

$$= 1.01325 \times 10^5 \text{ Pa}$$

$$= 1.01325 \text{ bar}$$

$$= 1 \text{ atm}$$

$$= 760 \text{ torr} \text{ (at any temperature)}$$

$$= 760 \text{ mmHg} \text{ (at 0°C)}$$

$$\mathbf{General Chemistry I}$$

$$T \text{ A B L E 9}$$

$$\mathbf{Unit}$$

$$pascal (Pa)$$

$$bar$$

$$atmosphere (at atmosphere)$$

$$T \text{ A B L E 9}$$

TABLE 9.2	Units of Pressure		
Unit	Definition		
pascal (Pa)	1 kg m ⁻¹ s ⁻²		
bar	$1 imes 10^5$ Pa		
atmosphere (atm)	101,325 Pa		
torr	1/760 atm		
760 mm Hg (at 0°C)	1 atm		
14.6960 pounds per square inch (psi, lb	in ⁻²)		

Pressure and Boyle's Law

~ Experiments on the compression and expansion of air.

"The spring of the Air and Its Effects" (1661).

- (a) $P vs. V \rightarrow$ hyperbola
- (b) $P vs. 1/V \rightarrow \text{straight line passing through the origin (slope: C)}$
- (c) $PV vs. P \rightarrow \text{straight line independent of } P$

(parallel to *P*-axis, intercept *C* on *PV*-axis)

The value of C at 0°C and for 1 mol of gas,

~ good for <u>all</u> gases at very <u>low</u> pressure

C = PV = 22.414 L atm

9

Pressure and Boyle's Law

Boyle's *J*-tube experiment

Trapped air at the closed end of the *J*-tube: $P = 1 \text{ atm } + \frac{h \text{ (in mm)}}{760 \text{ mm atm}^{-1}}$

Add Hg and measure the volume of air (V):

 $P = \frac{C}{V} = C\left(\frac{1}{V}\right)$

or PV = C

C: a constant at constant T and fixed amount of gas

Robert Boyle (UK, 1627-1691)

General Chemistry I

10

Temperature and Charles's law

Fig. 9.5 Volume of a gas confined at constant *P* increases as *T* increases.

Fig. 9.6 The volume of a sample of a gas is a function of temperature at constant pressure.

CHEMISTRY

12

Temperature and Charles's law

 $V = \text{constant} \times T \text{ (at constant } n \text{ and } P)$

$$t = 273.15^{\circ} C \left(\frac{V}{V_0} - 1 \right)$$
$$V = V_0 \left(1 + \frac{t}{273.15^{\circ} C} \right) = V_0 \cdot \frac{T}{273.15}$$

T(Kelvin) = 273.15 + t(Celsius)

Jacques Charles (France,1746-1823) General Chemistry I

Absolute Temperature Scale, K

Kelvin, Lord William Thomson (UK, 1824-1907)

0 K : 'absolute zero'temperature 273.16 K : triple point of water

 $0 \text{ K} = -273.15 \text{ °C} \rightarrow 0 \text{ °C} = 273.15 \text{ K}$

Kelvin scale: absolute, thermodynamic temperature scale 'absolute zero' temperature at which all thermal motion ceases in the classical description of thermodynamics.

 \rightarrow a direct connection between the experimentally observed macroscopic behavior of matter and the structure and interactions of its constituent molecules.

9.3 THE IDEAL GAS LAW

Boyle's law: Charles' law: Avogadro's hypothesis: $V \propto n$ (at constant T and P)

 $V \propto 1/P$ (at constant T and n) $V \propto T$ (at constant *P* and *n*)

PV = nRT

 $\sqrt{}$ Equation of state

- $\sqrt{1}$ Limiting law for real gases as $P \rightarrow 0$
- $\sqrt{Universal}$ gas constant, R $R = 8.314 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$
 - $= 8.206 \times 10^{-2} \text{ L} \cdot \text{atm} \cdot \text{K}^{-1}$

The Gas Constant, R

 $8.205~74 \times 10^{-2} \text{ L} \cdot \text{atm} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$ $8.314 47 \times 10^{-2} \text{ L} \cdot \text{bar} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$ 8.314 47 L·kPa·K⁻¹·mol⁻¹ 8.314 47 $J \cdot K^{-1} \cdot mol^{-1}$ $62.364 \text{ L} \cdot \text{Torr} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$

15

EXAMPLE 9.5

Concentrated nitric acid acts on copper

to give nitrogen dioxide and dissolved copper ions according to the balanced chemical equation

 $Cu(s) + 4H^{+}(aq) + 2NO_{3}^{-}(aq) \rightarrow 2NO_{2}(g) + Cu^{2+}(aq) + 2H_{2}O(I)$

 $Cu(s) + 4H^{+}(aq) + 4NO_{3}^{-}(aq) → 2NO_{2}(g) + Cu(NO_{3})_{2}(aq) + 2H_{2}O(I)$

Suppose that 6.80 g copper is consumed in this reaction, and that the NO_2 is collected at a pressure of 0.970 atm and a temperature of 45°C. Calculate the volume of NO_2 produced.

 $\frac{6.80 \ g \ Cu}{63.55 \ g \ mol^{-1}} = 0.107 \ mol \ Cu \qquad 0.107 \ mol \ Cu \ \times \ \frac{2 \ mol \ NO_2}{1 \ mol \ Cu} = 0.214 \ mol \ NO_2$

$$V = \frac{nRT}{P} = \frac{(0.214 \text{ mol})(0.08206 \text{ L atm mol}^{-1}\text{K}^{-1})(273.15 + 45)\text{K}}{0.970 \text{ atm}} = 5.76 \text{ L}$$

9.4 MIXTURE OF GASES

▶ Partial pressure (P_i) of the ith gas in a mixture of gases → pressure that the ith gas would exert if it occupied the container alone

Dalton's Law of Partial Pressures

The total pressure of a mixture of gases is the sum of the partial pressures of its component.

$$P = P_{\rm A} + P_{\rm B} + \dots = \sum_{\rm i} P_{\rm i}$$

Mole fraction of the component A, x_A

$$x_{\rm A} = \frac{n_{\rm A}}{n_{\rm A} + n_{\rm B} + \dots}, \qquad x_{\rm A} + x_{\rm B} + \dots = 1$$

$$P_{\rm A} = \frac{n_{\rm A}RT}{V}, \quad P = \frac{nRT}{V} = \left(n_{\rm A} + n_{\rm B} + \cdots\right)\frac{RT}{V} \longrightarrow \quad P_{\rm A} = \frac{n_{\rm A}P}{n_{\rm A} + n_{\rm B} + \cdots} = x_{\rm A}P$$

$$\therefore P_{A} = x_{A}P$$

KAIST

EXAMPLE 9.6 When NO_2 is cooled to room temperature, some of it reacts to form a dimer, N_2O_4 , through the reaction

$$2NO_2(g) \rightarrow N_2O_4(g)$$

Suppose 15.2 g of NO₂ is placed in a 10.0 L flask at high temperature and the Flask is cooled to 25°C. The total pressure is measured to be 0.500 atm. What partial pressures and mole fractions of NO₂ and N₂O₄ are present?

$$\frac{15.2 \ g \ NO_2}{46.01 \ g \ mol^{-1}} = 0.330 \ mol \ NO_2 \qquad n_{NO_2} + 2n_{N_2O_4} = 0.330 \ mol$$

$$P_{NO_2} + P_{N_2O_4} = \frac{RT}{V}n_{NO_2} + \frac{RT}{V}n_{N_2O_4} = 0.500 atm$$

 $n_{NO_2} + n_{N_2O_4} = 0.500 atm \frac{V}{RT} = \frac{(0.500 atm)(10.0 L)}{(0.08206 L atm mol^{-1} K^{-1})(298 K)} = 0.204 mol$

 $\therefore n_{N_2O_4} = 0.126 \ mol, n_{NO_2} = 0.078 \ mol$

- \rightarrow Microscopic explanation of empirical ideal gas law
- → Begin with a model and use the basic laws of physics with mathematical reasoning to show how this model helps explain the measured properties of gases.

20

9.5 THE KINETIC THEORY OF GASES

- 1. A gas consists of a collection of molecules in continuous random motion.
- 2. Gas molecules are infinitesimally small (mass) points.
- 3. The molecules move in straight lines until they collide.
- 4. The molecules do not influence one another except during collisions.
- → provides a microscopic understanding of Boyle's law and also a microscopic mechanical definition of temperature as a measure of the average kinetic energy of the molecules in a gas

 Collision with walls: consider molecules traveling only in one dimensional x with a velocity of v_x.

The change in momentum of one molecule: $2mv_x$

All the molecules within a distance $v_x \Delta t$ of the wall and traveling toward it will strike the wall during the interval Δt .

If the wall has area A, all the particles in a volume $Av_x\Delta t$ will reach the wall if they are traveling toward it.

General Chemistry I

21

The number of molecules in the volume $Av_x\Delta t$ is that fraction of the total volume V, multiplied by the total number of molecules:

Number of molecules =
$$\frac{Av_x \Delta t}{V} \times N = \frac{NAv_x \Delta t}{V}$$

The average number of collisions with the wall during the interval Δt is half the number in the volume Av_x Δt :

Number of collisions =
$$\frac{NAv_x\Delta t}{2V}$$

The total momentum change = number of collisions × individual molecule change

$$Total momentum change = \frac{NAv_{x}\Delta t}{2V} \times 2mv_{x} = \frac{NmAv_{x}^{2}\Delta t}{V}$$

(total momentum change)/∆t Force = rate of change of momentum = $\frac{NmAv_x^2}{V}$ $Pressure = \frac{NmAv_{x}^{2}}{VA} = \frac{Nmv_{x}^{2}}{V}$ $P = \frac{Nm\overline{v_x^2}}{V}$ for the average value of $\overline{v_x^2}$ > mean-square speed $\overline{u^2} = \overline{v_x^2} + \overline{v_y^2} + \overline{v_z^2} = 3\overline{v_x^2}$

$$PV = \frac{1}{3}Nm\overline{u^2}$$
 $P = \frac{Nmu^2}{3V}$

Force = rate of change of momentum =

$$PV = \frac{1}{3}Nm\overline{u^2} = nRT \qquad \qquad \frac{1}{3}N_A m\overline{u^2} = RT$$

- Kinetic energy of N_A molecules, $\overline{E} = \frac{1}{2}N_A m \overline{u^2} = \frac{3}{2} \times \left(\frac{1}{3}N_A m \overline{u^2}\right) = \frac{3}{2}RT$

- average kinetic energy per molecule, $\bar{\epsilon} = \frac{3}{2}k_BT$ $k_B = R/N_A$

 \rightarrow Depends only on the temperature

- root-mean-square speed
$$\overline{u^2} = \frac{3RT}{M}$$

$$u_{rms} = \sqrt{\overline{u^2}} = \sqrt{\frac{3RT}{M}}$$

 $M = molar mass = N_A m$

Maxwell-Boltzmann distribution of speed

$$\frac{\Delta N}{N} = f(v)\Delta v \text{ with } f(v) = 4\pi \left(\frac{M}{2\pi RT}\right)^{3/2} v^2 e^{-Mv^2/2RT}$$

the speed distribution function
or $f(v) = 4\pi \left(\frac{m}{2\pi k_B T}\right)^{3/2} v^2 e^{-mv^2/2k_B T}$

Boltzmann constant: $k_B = R / N_A = 1.38066 \times 10^{-23} \text{ J} \cdot \text{K}^{-1}$

James Clerk Maxwell (Scotland, 1831-1879) General Chemistry I

 \rightarrow

Ludwig Eduard Boltzmann (Austria, 1844-1906)

Fig. 9.13 A device for measuring the distribution of molecular speeds.

(1) Most probable speed:

$$v_{mp} = \sqrt{\frac{2k_BT}{m}} = \sqrt{\frac{2RT}{M}} \qquad \left[\frac{df(v)}{dv} = 0\right]_{v=v_{mp}}$$

(2) Average speed:

$$\bar{v} = \int_{0}^{\infty} vf(v)dv = \sqrt{\frac{8k_BT}{\pi m}} = \sqrt{\frac{8RT}{\pi M}}$$
(3) Mean square speed:

$$\bar{v}^2 = \int_{0}^{\infty} v^2 f(v)dv = \frac{3k_BT}{m} = \frac{3RT}{M}$$
(4) Root-mean-square speed:

$$v_{rms} = \sqrt{\overline{v^2}} = \sqrt{\frac{3k_BT}{m}} = \sqrt{\frac{3RT}{M}}$$

$$v_{rms} = \sqrt{\overline{v^2}} = \sqrt{\frac{3k_BT}{m}} = \sqrt{\frac{3RT}{M}}$$

0.2

 $v_{mp} < \overline{v} < v_{rms} = 1.000 : 1.128 : 1.225$

9.6 REAL GASES: INTERMOLECULAR FORCES

Compression (or Compressibility) factor, Z

$$Z = \frac{V_{\rm m}}{V_{\rm m}^{\rm ideal}} = \frac{V_{\rm m}}{RT/P} = \frac{PV_{\rm m}}{RT}$$

- For an ideal gas, Z = 1.
- Real gases,

deviation from Z = 1 as $P \uparrow$.

- Z < 1 for attractive force
- Z > 1 for repulsion

z = PV/nRT

General Chemistry I

30

The Van der Waals Equation of State

- Corrections to the ideal equation of state
 - Attraction at long distance:

Reduction in collision frequency $\propto n/V$

Reduction in intensity of collision $\propto n/V$

$$P_{\text{ideal}} = P + a \frac{n^2}{V^2}$$

- Repulsion at short distance :

No overlap of molecules \rightarrow excluded volume effect Reduction in free volume $\propto n$

$$V_{\text{ideal}} = V - bn$$

Van der Waals equation:

$$\begin{pmatrix} P+a\frac{n^2}{V^2} \end{pmatrix} (V-nb) = nRT$$
 a: atm L² mol⁻²
b: L mol⁻¹
R: L atm mol⁻¹ K⁻²

$$-z = \frac{PV}{nRT} = \frac{V}{V - nb} - \frac{a}{RT}\frac{n}{V} = \frac{1}{1 - \frac{bn}{V}} - \frac{a}{RT}\frac{n}{V}$$

Repulsive forces (through b) increase z above 1. Attractive forces (through a) reduce z.

- Constant b is the volume excluded by 1 mol of molecules and should be close to V_m , the volume per mole in the liquid state.

TABLE 9.3

van der Waals Constants of Several Gases

Name	Formula	<i>a</i> (atm L ² mol ⁻²)	<i>b</i> (L mol ⁻¹)
Ammonia	NH ₃	4.170	0.03707
Argon	Ar	1.345	0.03219
Carbon dioxide	CO ₂	3.592	0.04267
Hydrogen	H ₂	0.2444	0.02661
Hydrogen chloride	HCI	3.667	0.04081
Methane	CH ₄	2.253	0.04278
Nitrogen	N_2	1.390	0.03913
Nitrogen dioxide	NO ₂	5.284	0.04424
Oxygen	O ₂	1.360	0.03183
Sulfur dioxide	SO ₂	6.714	0.05636
Water	H ₂ O	5.464	0.03049

Lennard-Jones Potential:

$$V_{\rm LJ}(R) = 4\varepsilon \left[\left(\frac{\sigma}{R}\right)^{12} - \left(\frac{\sigma}{R}\right)^{6} \right]$$

where ε is the depth and σ is the distance at which V(R) passes through zero.

The two parameters ε and σ in the Lennard–Jones potential, like the van der Waals parameters a and b, are simple ways of characterizing the interactions between molecules in real gases.

TABLE 9.4

Lennard–Jones Parameters for Atoms and Molecules

Substance	$\sigma(m)$	ε(J)
Не	$2.56 imes 10^{-10}$	1.41×10^{-22}
Ne	$2.75 imes 10^{-10}$	4.92×10^{-22}
Ar	$3.40 imes 10^{-10}$	$1.654 imes 10^{-21}$
Kr	3.60×10^{-10}	$2.36 imes 10^{-21}$
Xe	4.10×10^{-10}	$3.06 imes 10^{-21}$
H ₂	2.93×10^{-10}	$5.11 imes 10^{-22}$
O ₂	3.58×10^{-10}	1.622×10^{-21}
CO	$3.76 imes 10^{-10}$	$1.383 imes 10^{-21}$
N ₂	$3.70 imes 10^{-10}$	1.312×10^{-21}
CH ₄	3.82×10^{-10}	$2.045 imes 10^{-21}$

Key question: how can we describe molecular behaviors in the gaseous state?

